bp神经网络的实现包括哪两个传播方式 bp神经网络的实现包括哪两个传播途径
- 知识
- 2023-03-01
- 7热度
- 0评论
BP神经网络的实现包括哪两个传播
包括正向传播和反向传播。
BP(Back Propagation)算法,又称为误差反向传递算法或多层前馈神经网络,是人工神经网络中使用最为频繁的一种监督式的学习算法。
该模型要用到训练算法,其应用的误差反向传播,巧妙的化解了该模型的网络学习问题,从而较大程度的推动神经网络快速的发展。其在信息传播时为正向传播,而传播误差时采用反向传播,即BP神经网络是按照信号正向传播,误差反向传播的原理来对网络的结构进行训练和修正。
BP神经网络整体由这两个传播过程交替组成,是一种单向多层的前向神经网络,分别是输入层(input),隐含层(hidelayer),输出层(outputlayer),每一层通过各层的神经元相互连接,同一层的神经元又相互独立。
延伸阅读
bp神经网络能干什么
BP神经网络是一种按照误差反向传播算法训练的多层前馈网络,也是目前应用最广泛的神经网络模型之一。它由信息的正向传播和误差的反向传播两个过程组成。
输入层的神经元负责接受外界发来的各种信息,并将信息传递给中间层神经元,中间隐含层神经元负责将接收到的信息进行处理变换,根据需求处理信息,实际应用中可将中间隐含层设置为一层或者多层隐含层结构,并通过最后一层的隐含层将信息传递到输出层,这个过程就是BP神经网络的正向传播过程。
MATLAB中BP神经网络的训练算法具体是怎么样的
BP神经网络是最基本、最常用的神经网络,Matlab有专用函数来建立、训练它,主要就是newff()、train()、sim()这三个函数,当然其他如归一化函数mapminmax()、其他net的参数设定(lr、goal等)设置好,就可以通过对历史数据的学习进行预测。附件是一个最基本的预测实例,本来是电力负荷预测的实例,但具有通用性,你仔细看看就明白了。
bp神经网络和卷积神经网络的区别
一、计算方法不同
1、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。
3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。
二、用途不同
1、BP神经网络:
(1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;
(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;
(3)分类:把输入向量所定义的合适方式进行分类;
(4)数据压缩:减少输出向量维数以便于传输或存储。
3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。
联系:
BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。
三、作用不同
1、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。
2、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。
bp神经网络如何计算权值和阈值
首先需要了解BP神经网络是一种多层前馈网络。以看一下在matlab中BP神经网络的训练函数,有梯度下降法traingd,弹性梯度下降法trainrp,自适应lr梯度下降法traingda等。
因为初始值(初始权值和阀值)都在x这个向量中,x(n,1)的长度n为:n=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum
其中inputnum*hiddennum是输入层到隐含层的权值数量,hiddennum是隐含层神经元个数(即隐含层阀值个数),hiddennum*outputnum是隐含层到输出层权值个数,outputnum是输出层神经元个数(即输出层阀值个数)。
结构
BP网络是在输入层与输出层之间增加若干层(一层或多层)神经元,这些神经元称为隐单元,它们与外界没有直接的联系,但其状态的改变,则能影响输入与输出之间的关系,每一层可以有若干个节点。
BP神经网络的计算过程由正向计算过程和反向计算过程组成。正向传播过程,输入模式从输入层经隐单元层逐层处理,并转向输出层,每~层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的连接通路返回,通过修改各神经元的权值,使得误差信号最小。
bp学习算法是什么类型学习算法
误差反向传播(Error Back Propagation, BP)算法
1、BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。
1)正向传播:输入样本->输入层->各隐层(处理)->输出层
注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)
2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层
其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。
BP算法基本介绍
含有隐层的多层前馈网络能大大提高神经网络的分类能力,但长期以来没有提出解决权值调整问题的游戏算法。1986年,Rumelhart和McCelland领导的科学家小组在《Parallel Distributed Processing》一书中,对具有非线性连续转移函数的多层前馈网络的误差反向传播(Error Back Proragation,简称BP)算法进行了详尽的分析,实现了Minsky关于多层网络的设想。由于多层前馈网络的训练经常采用误差反向传播算法,人们也常把将多层前馈网络直接称为BP网络。
BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传人,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行到预先设定的学习次数为止。
bp神经网络通俗概论
BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一。
通俗的说,BP神经网络是人工神经网络的BP算法。BP神经网络是应用最广泛的神经网络模型之一。
人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实现其功能的核心是算法。BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称为BP算法,它的基本思想是梯度下降法,利用梯度搜索技术,以期使网络的实际输出值和期望输出值的误差均方差为最小。
BP神经网络中隐藏层节点个数怎么确定最佳
1、神经网络算法隐含层的选取 1.1 构造法 首先运用三种确定隐含层层数的方法得到三个隐含层层数,找到最小值和最大值,然后从最小值开始逐个验证模型预测误差,直到达到最大值。
最后选取模型误差最小的那个隐含层层数。该方法适用于双隐含层网络。1.2 删除法 单隐含层网络非线性映射能力较弱,相同问题,为达到预定映射关系,隐层节点要多一些,以增加网络的可调参数,故适合运用删除法。1.3黄金分割法 算法的主要思想:首先在[a,b]内寻找理想的隐含层节点数,这样就充分保证了网络的逼近能力和泛化能力。为满足高精度逼近的要求,再按照黄金分割原理拓展搜索区间,即得到区间[b,c](其中b=0.619*(c-a)+a),在区间[b,c]中搜索最优,则得到逼近能力更强的隐含层节点数,在实际应用根据要求,从中选取其一即可。BP算法中,权值和阈值是每训练一次,调整一次。逐步试验得到隐层节点数就是先设置一个初始值,然后在这个值的基础上逐渐增加,比较每次网络的预测性能,选择性能最好的对应的节点数作为隐含层神经元节点数。
rbp神经网络介绍
BP 神经网络是一类基于误差逆向传播 (BackPropagation, 简称 BP) 算法的多层前馈神经网络,BP算法是迄今最成功的神经网络学习算法。现实任务中使用神经网络时,大多是在使用 BP 算法进行训练。值得指出的是,BP算法不仅可用于多层前馈神经网络,还可以用于其他类型的神经网络,例如训练递归神经网络。但我们通常说 “BP 网络” 时,一般是指用 BP 算法训练的多层前馈神经网络。