统计学中区间估计与假设检验的区别与联系 统计学中区间估计与假设检验的区别与联系论文
- 知识
- 2023-02-15
- 56热度
- 0评论
统计学中区间估计与假设检验的区别与联系?
区别是:用统计量推断参数时,如果参数未知,则这种推断叫参数估计——用统计量估计未知的参数;如果参数已知(或假设已知),需要利用统计量检验已知的参数是否靠谱,此时的统计推断即为假设检验。
联系是:二者都属于推断统计——利用样本的数据得到样本统计量(statistic),然后做出对总体参数(parameter)的论断。
假设检验,是已知数据,检验是否可信.
区间估计,是算出置信区间.
其实过程都是一样的,就是用已知的数据,也就是样本,计算出样本均值样本方差这些,然后代入三大分布,开放分布,标准正态分布,t分布,计算出置信区间,也就是概率大的区间.区间估计就到此为止,这个区间就是答案,假设检验则要检验数据是否合理.
扩展资料:参数估计的一种形式。通过从总体中抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,以作为总体的分布参数(或参数的函数)的真值所在范围的估计。用数轴上的一段经历或一个数据区间,表示总体参数的可能范围.这一段距离或数据区间称为区间估计的置信区间。
假设检验(Hypothesis Testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显著性水平进行检验,作出拒绝或接受假设H0的判断。常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。
延伸阅读
区间估计的三种方法?
抽样估计(Sampling estimation)又称为抽样推断,也称为参数估计。它是在抽样调查的基础上所进行的数据推测,即用抽样调查所得到的一部分单位的数量特征来估计和推算总体的数量特征。抽样估计是对总体进行描述的另一种重要方法。它具有花费小、适用性强、科学性高等特点。因此,国内外在许多领域都广泛地运用抽样推断来搜集和分析统计资料。
抽样估计有点估计和区间估计两种方法。
点估计,又称定值估计,就是用实际样本指标数值作为总体参数的估计值。点估计的方法简单,一般不考虑抽样误差和可靠程度,它适用于对推断准确程度与可靠程度要求不高的情况。
区间估计就是根据样本指标、抽样误差和概率保证程度去推断总体参数的可能范围。在统计实践中,通常用一个区间及其出现的概率来估计总体参数,并以一定的概率保证总体参数包含在估计区间内,这就是参数的区间估计问题。区间估计是抽样估计的主要方法。 进行区间估计要完成两个方面的估计:其一,根据样本指标和抽样平均误差估计总体指标的可能范围;其二,估计推断总体指标真实值在这个范围的可靠程度。
区间估计名词解释?
区间估计是参数估计的一种形式,是以一定的概率保证估计包含总体参数的一个值域,即根据样本指标和抽样平均误差推断总体指标的可能范围。它包括两部分内容:一是这一可能范围的大小;二是总体指标落在这个可能范围内的概率。例如,估计一种药品所含杂质的比率在1~2%之间。