三角形的面积计算公式(三角形的所有定理及概念)
- 知识
- 1小时前
- 1热度
- 0评论
三角形的定义、性质及判定性定理?
等腰三角形:
定义:有两条边相等的三角形是等腰三角形。在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
性质:1.等腰三角形的两条腰相等;2.等腰三角形的两个底角相等;3.等腰三角形是轴对称图形;4.等腰三角形顶角的平分线、底边上的中线、底边上的高重合,它们所在的直线都是等腰三角形的对称轴。
判定:1.有两条边相等的三角形是等腰三角形;2.如果一个三角形有两个角相等,那么这两个角所对的边也相等。
等边三角形:
定义:三边都相等的三角形是等边三角形,也叫正三角形。
性质:1.等边三角形是轴对称图形,有三条对称轴,任意边的垂直平分线都是它的对称轴;2.等边三角形的三个角都相等,每个角都是60°。
判定:1.三条边都相等的三角形是等边三角形;2.有一个角是60°的等腰三角形是等边三角形;3.有两个角是60°的三角形是等边三角形。
直角三角形:
定义:有一个内角是直角的三角形叫做直角三角形。其中,构成直角的两边叫做直角边,直角边所对的边叫做斜边。
性质:1.直角三角形的两个余角互余;2.直角三角形斜边上的中线等于斜边的一半;3.直角三角形中30°角所对的直角边等于斜边的一半;4.勾股定理。
判定:1。有一个角是直角的三角形是直角三角形;2.有两个角互余的三角形是直角三角形;3.如果一个三角形一条边上的中线等于这条边的的一半,那么这个三角形是直角三角形;4.如果三角形的三边长a、b、c满足于a^2+b^2=c^2,那么这个三角形是直角三角形。
三角形有几个对称轴
三角形有几个对称轴具体看是什么三角形。不等边三角形没有对称轴。等腰三角形只有一条对称轴。等边三角形有三条对称轴。等腰三角形的对称轴是经过顶点和底边中心的直线。
在平面上三角形的内角和等于180°(内角和定理)。在平面上三角形的外角和等于360°(外角和定理)。在平面上三角形的外角等于与其不相邻的两个内角之和。
三角形的面积等于什么
三角形的面积计算公式为三角形底与高乘积的一半,记为S=1/2(ah)。
三角形面积公式是指使用算式计算出三角形的面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形,符号为△。
常见的三角形按边分有等腰三角形(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)、不等腰三角形;按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
等边三角形面积和边长的关系
等边三角形面积和边长的关系为:等边三角形的面积是其边长的平方乘以四分之根号三。
等边三角形为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。因此可以容易计算出等边三角形的高和边长a的关系:h=√3/2a,因此其面积S=1/2ah=√3/4a。
三角形外角和证明方法
1、用翻折法,就是七下数学书上第6页介绍的那种(把一个三角形向里折成一个矩形,三个角在一起)。
2、从一个顶点做对边的平行线,用内错角相等来证。
3、任意做一个四边形,连接对角线,分成两个三角形,再用四边形内角和360来证。
4、将任意一个三角形做高分成两个直角三角形,再利用斜中线定理来证。
5、延长一边,用一个角的外角等于其不相邻的两个内角和。
6、画这个三角形的外接圆,用圆周角的度数等于其所对的弧的度数的一半来证。
7、画这个三角形的内切圆,连接圆心和三角形的顶点,可得到三个三角形的内角和等于一个三角形的内角和+360°。
8、过三角形内一点做三边的平行线,在用内错角相等、同位角相等、对顶角相等把三个顶角弄在一条直线上。
9、也可过边上一点做其余两边的平行线用类似于8的方法来证。
10、延长三边(若三角形ABC只需延长ab、bc、ca,不需要延长ba、cb、ac)有三条直线则为520°又因为外角和360°所以内角和180°。
等腰三角形的高与底边的关系
1、等腰三角形底边的高和底边上的中线是重合关系,相当于一条线。等腰三角形,指至少有两边相等的三角形,相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
2、等腰三角形的两个底角度数相等(简写成“等边对等角”)。等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。如下图所示,AE是等腰三角形ABC底边BC上的高、也是底边BC上的中线,还是顶角∠BAC的角平分线。
三角形的中线平分什么
三角形中线能将三角形分成面积相等的两部分;三角形三条中线能将三角形分成面积相等的六部分;当是等边三角形时,中线和角平分线重合,能够平分角;当是等腰三角形时,顶角的平分线和底边上的中线重合。
1、三角形角平分线性质:
三角形的角平分线定义:三角形其中一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
三角形角平分线是一条线段;三角形角平分线分对边成两条线段,与角的两条边对应成比例。
2、三角形的中线和角平分线的区别:
三角形的中线是从顶角连接下面边的中点,角平分线是把顶角分成同等大小的两个角,不一定连接下面边的中点;
对于等腰三角形来说,中线和角平分线是重合的;对于非等腰三角形,两条线则不重合。
如何证明三角形相似的判定定理
如果两个三角形对应边的比相等且夹角相等,这2个三角形也可以说明相似(简叙为:两边对应成比例且夹角相等,两个三角形相似)或者)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似。
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
三角形的周长公式是什么
1、三角形周长公式:若一个三角形的三边分别为a、b、c,则C=a+b+c。
2、常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)。
等边和等腰三角形有什么区别
等边和等腰三角形的区别是:三个角的度数不同、三边关系不同。等边三道角形的三条边相等,等边三角形的两腰长相等,第三边小于两边专之和,大于0;等边三角形的三个内角为60度,等腰三角形的两腰所对角相等,顶角=180-2×底角。
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
等边三角形三个角都是多少度
等边三角形三个角都是60度。等边三角形为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。
等边三角形的性质有:等边三角形每条边上的中线、高线和角平分线互相重合。(三线合一)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或角的平分线所在的直线。等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。