焊缝抗拉强度和屈服强度计算的区别(焊缝抗拉强度计算公式)

焊缝抗拉强度和屈服强度计算?

以对接焊缝为例说明。

设对接焊缝承受轴心拉力N作用,矩形截面焊件宽b,厚t,施焊时采用引弧板。则其抗拉强度按下式计算:

N/(bt)<=ftw 。

式中,

ftw——对接焊缝的抗拉强度设计值,MPa。

说明,确定ftw值时,要考虑以下因素:

1、焊件钢号、焊条牌号。

2、焊件厚度或直径。

3、焊缝质量等级。

焊缝屈服强度是焊缝强度标准值,由焊缝屈服强度实测值的平均值减去1.645倍标准差得到。

拉力与抗拉强度换算?

计算公式:σ=Fb/So。

在拉伸过程中,材料在屈服阶段承受的最大力(Fb)随着屈服阶段和强化阶段的横截面尺寸而明显减小。除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。

抗压强度的影响因素:

1、首先跟金属元素有关,不同的纯金属,其抗拉强度是不同的,其实是跟原子之间的结合力直接相关,原子不同,结合力不同。

2、跟合金化有关,加入不同的合金元素,其抗拉强度是不同的,合金元素种类、加入量大小、不同的合金元素之间的配比、合金元素存在的状态等等都有关。

3、跟金属的晶粒度有关,一般晶粒越小,抗拉强度越高。

4、跟组织状态有关,即使同样成分的合金,不同的热处理状态,也即不同的组织,其性能是不同的,材料学的一个原则是组织决定了性能,抗拉强度只不过是力学性能中的一项而已,所以,组织决定了抗拉强度大小。

抗拉强度计算方法?

计算公式为:σ=Fb/So

式中:Fb--试样拉断时所承受的最大力,N(牛顿); So--试样原始横截面积,mm2。

试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/

(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。

抗拉强度( Rm)指材料在拉断前承受最大应力值。当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。

此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。

单位:N/

(单位面积承受的公斤力)

抗拉强度计算?

计算公式为:σ=Fb/So

式中:Fb--试样拉断时所承受的最大力,N(牛顿); So--试样原始横截面积,mm2。

试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/

(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。

抗拉强度( Rm)指材料在拉断前承受最大应力值。当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。

此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。

单位:N/

(单位面积承受的公斤力)

扩展资料:

抗拉强度的实际意义

1)σb标志韧性金属材料的实际承载能力,但这种承载能力仅限于光滑试样单向拉伸的受载条件,而且韧性材料的σb不能作为设计参数,因为σb对应的应变远非实际使用中所要达到的。如果材料承受复杂的应力状态,则σb就不代表材料的实际有用强度。

由于σb代表实际机件在静拉伸条件下的最大承载能力,且σb易于测定,重现性好,所以是工程上金属材料的重要力学性能标志之一,广泛用作产品规格说明或质量控制指标。

2)对脆性金属材料而言,一旦拉伸力达到最大值,材料便迅速断裂了,所以σb就是脆性材料的断裂强度,用于产品设计,其许用应力便以σb为判据。

3)σ的高低取决于屈服强度和应变硬化指数。在屈服强度一定时,应变硬化指数越大,σb也越高。

4)抗拉强度σb与布氏硬度HBW、疲劳极限

之间有一定的经验关系

抗拉强度计算公式?

计算公式为:σ=Fb/So

式中:Fb--试样拉断时所承受的最大力,N(牛顿); So--试样原始横截面积,mm病? 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/ (MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。

抗拉强度( Rm)指材料在拉断前承受最大应力值。当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。

此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。

单位:N/ (单位面积承受的公斤力)

扩展资料:

抗拉强度的实际意义

1)σb标志韧性金属材料的实际承载能力,但这种承载能力仅限于光滑试样单向拉伸的受载条件,而且韧性材料的σb不能作为设计参数,因为σb对应的应变远非实际使用中所要达到的。如果材料承受复杂的应力状态,则σb就不代表材料的实际有用强度。

由于σb代表实际机件在静拉伸条件下的最大承载能力,且σb易于测定,重现性好,所以是工程上金属材料的重要力学性能标志之一,广泛用作产品规格说明或质量控制指标。

2)对脆性金属材料而言,一旦拉伸力达到最大值,材料便迅速断裂了,所以σb就是脆性材料的断裂强度,用于产品设计,其许用应力便以σb为判据。

3)σ的高低取决于屈服强度和应变硬化指数。在屈服强度一定时,应变硬化指数越大,σb也越高。

4)抗拉强度σb与布氏硬度HBW、疲劳极限 之间有一定的经验关系。

参考资料:

抗拉强度ftk的计算公式?

抗拉强度的计算公式:σ=Fb/So

试样在拉伸过程中,材料在屈服阶段承受的最大力(Fb)随着屈服阶段和强化阶段的横截面尺寸而明显减小。除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。

对于具有非成形颈缩的脆性材料和塑性材料,最大拉伸载荷是断裂载荷,因此抗拉强度也代表断裂阻力。对于具有颈缩的塑性材料,拉伸强度代表静态拉伸下的最大变形和极限承载力的抵抗力。对于钢丝绳等零件,抗拉强度是一个更有意义的性能指标。

拉伸强度测量简单,重现性好。它与其它力学性能如疲劳极限和硬度有一定的关系。因此,它也被用作评价产品质量和工艺规范的常规材料力学性能之一。

岩石的抗拉强度可以用钢的抗拉试验方法来测定,但这种方法的加工工艺比较复杂。因此,圆形试件在劈裂试验中得到了广泛的应用。岩石抗拉强度按下式计算:

扩展资料:

抗拉强度的实际意义:

(1)σb标志韧性金属材料的实际承载能力,但该承载力仅限于光滑试件的单向拉伸加载条件,而延性材料的σb不能作为设计参数,因为相应的σb应变远未达到实际使用要求。如果材料处于复杂的应力状态,则σb不代表材料的实际有效强度。

由于σb代表了实际机械零件在静态拉伸下的最大承载能力,σb易于测量,具有良好的再现性,是金属材料在工程中的重要力学性能之一,被广泛用作产品规格或质量控制指标。

(2)脆性金属材料,当拉伸力达到最大值时,材料会迅速断裂,SOYB是脆性材料的断裂强度。当在产品设计中使用时,其许用应力将以b为基础。

(3)σ的高度取决于屈服强度和应变硬化指数。屈服强度不变时,应变硬化指数越大,应变硬化指数越高。

(4)拉伸强度与布氏硬度HBW、疲劳极限σ??之间有一定的经验关系

在拉伸实验中,怎样计算抗拉强度?

拉伸试验力值(牛顿)/横截面积(平方毫米)=抗拉强度(牛顿/平方毫米)个别行业有修正系数可以带到公式中计算。

屈服强度抗拉强度公式?

屈服强度=屈服时的力(N)/拉伸试样的原始面积(mm2);抗拉强度=拉伸试验断裂前的最大力(N)/拉伸试样的原始面积(mm2)

一、屈服强度和抗拉强度的区别

抗拉强度是通过单向拉伸试验获得的金属材料力学性能指标。抗拉强度是金属材料在外力作用下抵抗变形和破坏的能力。毕竟它是一个力学性能指标,它有它的计算方法,抗拉强度=断裂载荷/试样初始横截面积。

然而,通过上述公式计算的抗拉强度只有在金属发生很小塑性变形和几乎没有塑性变形时是准确的。当金属有明显塑性变形时,计算时用的截面积应该是断后测量的真实截面积,获得的抗拉强度称为真实抗拉强度。

这个抗拉强度指标是抵抗最大变形能力的指标,换言之,当变形到这个程度时,材料就断裂了,在单向拉伸的条件下无法发现更大的变形了,它是一个极限,也是特定的拉伸样品能承受外加载荷的极限,因此英文称为Ultimate tensile strength。

金属材料的抗拉强度与屈服强度有什么区别?

从典型的拉伸曲线上可以看出抗拉强度和屈服强度的区别

屈服强度也是金属材料重要的力学性能指标之一。屈服强度代表金属材料对起始塑性变形抗力,其英文表达为Yield strength。实际上这样讲并不完全准确,因为在拉伸曲线上,有些金属材料有明显的屈服点,而另一些金属材料并没有明显的屈服点,尤其对一些微观组织结构不均匀的材料更是如此,所以就需要人为定义塑性变形到一定程度时对应的抗力作用屈服强度,实际上这个人为界定的塑性变形数值之前,金属内部驱动力较低的滑移已经开动,所以并不能准确反应塑性变形的开始。

有些金属材料没有明显的屈服点,究其原因是多晶体金属塑性变形存在非同时性。多晶体金属变形的一个重要特点是由无数同相晶粒或不同相晶粒构成。由于各晶粒的取向不同,在外力作用下,它们的变形不可能同时开始,而是那些滑移面阳适宜滑动的晶粒最先开始发生塑性变形,因此变形总是从那些比较弱的晶粒率先开始。多晶体金属还存在变形不均一性特点。它不仅体现在同一组成相的不同晶粒之间,也表现在不同组成相的不同晶粒之间。