全国硕士研究生考试大纲 全国研究生考试科目

全国硕士研究生考试大纲?

考研大纲,全称是全国硕士研究生入学统一考试考试大纲,具体分为两类:即公共课考试大纲和专业课考试大纲。

1.公共课考试大纲包括:考研政治、考研英语、考研数学考试大纲,每年由教育部统一公布,时间一般在9月。

2.专业课考试大纲概括说来分为三类,即教育部统一公布、各招生院校公布以及不公布三种类型。

由教育部统一公布的一般为考研统考专业课大纲,时间一般在9月,与公共课考试大纲的公布时间一致

延伸阅读

2023年考研大纲出了吗?

如果是考研大纲pdf,可以搜索考研英语公众号获取。官方没有出pdf版的,都是有人买了纸质版的,再扫描保存为pdf。

教育部考试中心在2022年9月16日颁布了《2023年全国硕士研究生入学统一考试英语(一)考试大纲》。与2022年的英语一考纲相比,考试的性质,目标,形式和试卷结构都没有变化,但是考查内容层面变化较大,比如语言知识描述在原先的词汇和语法的基础上增加了语篇和语用。

312心理学考研大纲?

心理学专业基础综合312总分为300分。其考研科目及试卷题型结构如下:

1、312统考心理学考研科目:

(1)心理学导论

(2)发展与教育心理学

(3)实验心理学

(4)心理统计与测量

2、试卷题型结构:

单项选择题65小题,每小题2分,共130分。

多项选择题10小题,每小题3分,共30分。

简答题5小题,每小题10分,共50分。

综合题3小题,每小题30分,共90分。

北航2023年人工智能考研大纲?

1、842人工智能基础综合试题含信号与系统、算法设计与分析和机器学习三门课程的内容。所有课程均不指定参考书。

2、试题总分为150分,每门课试题满分50分,三门课程的试题均计入考试成绩。

《信号与系统》考试大纲(50分)

一、复习要点

(一)信号与系统绪论

(1)信号与系统的概念;

(2)信号的描述、分类及常用信号;

(3)信号的基本运算。

(二)正交函数集与正交分解

(1)信号分解的物理意义;

(2)正交函数集;

(3)信号在正交函数集上的分解。

(三)连续周期信号的傅里叶级数

(1)连续周期信号在三角函数集上展开;

(2)连续周期信号傅里叶级数;

(3)有限项傅里叶级数与均方误差。

(四)连续信号的傅里叶变换

(1)非周期连续信号的傅里叶变换;

(2)典型信号的傅里叶变换;

(3)傅里叶变换的基本性质;

(4)周期信号的傅里叶变换。

(五)拉氏变换

(1)拉氏变换的定义、物理意义;

(2)拉氏变换的基本性质;

(3)拉氏逆变换;

(4)双边拉氏变换。

(六)连续时间系统的时域分析

(1)系统的概念、表示与分类;

(2)LTI系统分析方法概述;

(3)连续系统的时域经典分析法;

(4)零输入响应与零状态响应;

(5)卷积的定义与性质;

(6)卷积法求解系统响应。

(七)连续时间系统的S域分析

(1)系统函数;

(2)由系统函数零、极点分布分析时域特性;

(3)线性系统的稳定性分析。

(八)离散时间系统的时域分析

(1)离散时间信号(序列)及其表示;

(2)典型离散时间信号;

(3)离散时间信号的基本运算;

(4)离散时间系统的基本概念描述与分类;

(5)系统冲激响应函数的求解。

(九)离散时间系统的Z域分析

(1)z变换及其收敛域;

(2)典型序列的z变换;

(3)逆z变换;

(4)z变换的基本性质;

(5)系统函数与z域分析。

(十)离散信号的傅里叶分析

(1)离散周期信号的傅里叶级数DFS;

(2)序列的傅里叶变换离散时间傅里叶变换DTFT;

(3)离散傅里叶变换DFT;

(4)快速傅里叶变换FFT。

(十一)傅里叶变换及其图像处理应用

(1)数字图像简介;

(2)二维离散傅里叶变换2D DFT及其性质;

(3)2D DFT在图像处理中的应用。

《算法设计与分析》考试大纲(50分)

一、整体要求

(一)掌握算法的定义、性质和表示方法,并能够使用伪代码对算法进行描述;

(二)能够熟练采用渐近上界、渐近下界与渐近紧确界分析算法的运行时间;

(三)掌握算法设计的常用方法,包括分而治之、动态规划、贪心、近似算法;掌握图的基本概念和重要的基础图算法;

(四)掌握计算复杂性的基本概念和证明P类、NP类问题的方法;

(五)具有对简单计算问题的建模、分析、算法设计、算法优化和编程求解能力。

二、复习要点

(一)渐近复杂性分析

(1)O、Ω、Θ符号定义;

(2)分析给定算法的渐近复杂性;

(3)比较具有不同渐近上界的算法的效率;

(4)递归函数的运行时间分析。

(二)常用算法设计方法的基本思想和特点,以及针对具体问题设计相应的算法并分析其效率

(1)分治算法

(2)动态规划算法

(3)贪心算法

(4)近似算法

(三)图算法

(1)图的基本概念和基本性质;

(2)图的表示方法;

(3)图的遍历与搜索方法;

(4)最小生成树和最短路径等图具体问题算法。

(四)计算复杂性

(1)计算复杂性的基本概念,如判定问题、优化问题等;

(2)P类和NP类问题的定义和证明。

《机器学习》考试大纲(50分)

一、复习要点

(一)机器学习基础算法:(1)Bayesian学习以及相关算法;(2)Q学习基本概念;(3)归纳学习-决策树构建算法。

掌握机器学习发展历史、AlphaGO技术的发展历史以及核心技术,掌握Q学习的基本方法;掌握VC维的定义,以及统计学习理论的基本结论,深入理解经验风险和真实风险概念区别与联系;理解Bayesian的基本原理,贝叶斯学习、朴素贝叶斯算法在相关实际问题中应用;掌握HMM算法的基本原理;掌握信息熵概念的内涵、ID3算法构建过程、根据具体的实例,构建决策树。掌握信息增益的概念,以及在构建决策树时的物理含义。

(二)神经网络与深度学习:(1)线性分类器-感知机等;(2)传统神经网络-BP算法等;(3)深度学习-卷积神经网络等。

掌握线性分类器的构建方法,包括线性分类器的基本形式、构建方法;掌握感知机的构建方法、Fisher准则、最小均方误差准则。掌握机器学习里优化概念如何应用于线性分类器的设计。理解神经网络的反传算法基本原理、能够根据具体简单的网络实例写出反传公式的基本形式。了解经典深度神经网络模型、以及前沿技术,主要掌握卷积神经网络;理解卷积神经网络的构建过程、包括卷积操作的定义、Pooling操作的定义等。

(三)统计学习分类器:(1)支持向量机;(2)Adaboost算法;(3)子空间学习与稀疏表示。

理解统计学习理论的基本原理、支持向量机的基本原理与线性分类器的联系。掌握支持向量机的优化目标构造方法、优化算法以及应用。掌握Adaboost的基本原理,弱分类器的基本概念以及分类器融合算法。掌握子空间学习与稀疏表示的基本概念与思想,掌握主成分分析方法的具体过程、优化目标以及应用。基本了解Fisher判别分析、核判别分析等等;了解稀疏表示方法与子空间学习的联系与区别。

数学考研大纲?

考研数学大纲指由教育部考试中心组织编写,高等教育出版社独家出版的、规定当年全国硕士研究生入学考试相应科目的考试范围、考试要求、考试形式、试卷结构等权威政策指导性考研用书。

它既是当年全国硕士研究生入学考试命题的唯一依据,也是考生复习备考必不可少的工具书。包括政治理论、英语、俄语、日语、数学、法律硕士、西医综合、中医综合、教育学、心理学、历史学等分册,每本书后均附有的试卷、参考答案及评分标准。

2023年的考研大纲怎样查询呢?

1、输入网址 https://yz.chsi.com.cn/ 进入中国研究生招生信息网首页

2、在首页资讯栏中找到“考研资讯”,点击进入考研资讯页面

3、在“考研资讯”页面的下方找到“考试科目”,点击想要查找的科目

4、进入科目后找到所需的考试大纲即可